particular $\mathrm{Rh}^{1}(\mathrm{CO})_{2}$ species may reflect the differences in reducing/oxidizing properties of these specific surface sites.
D. Agglomeration of Atomically Dispersed $\mathbf{R h}^{1}$. As discussed above the reduction of $\mathrm{Rh}^{1} \rightarrow \mathrm{Rh}^{0}$ and the subsequent aggregation in the presence of $\mathrm{H}_{2}(\mathrm{~g})$ occurs readily at $T \sim 200 \mathrm{~K}$ and $P_{\mathrm{H}_{2}}$ as low as 10^{-1} Torr. The agglomerization is also kinetically controlled by the relative ratio of atomically dispersed (Rh^{1}) to crystallite (metallic Rh^{0}) sites as seen in Figure 11. This can be understood on the basis of our postulated mechanism above; the metallic $\mathrm{Rh}^{0}{ }_{x}$ sites act as "feeder sites" for hydrogen atoms that induce the reductive agglomerization. With a higher loading of $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}\left(10 \% \mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ these "feeder sites" are in close proximity to the isolated Rh^{1} sites. As a result the availability of migrating H atoms is considerably enhanced. On the other hand when almost no metallic $\mathrm{Rh}^{0}{ }_{x}$ sites are present (0.2% $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$) this process is inhibited (Figure 11A).

V. Summary and Conclusions

On the basis of the results of this work, the following conclusions can be made: (1) A general phenomenon, common for OH groups
on both $\mathrm{Al}_{2} \mathrm{O}_{3}$ and SiO_{2}, has been observed in which the reaction $(1 / x) \mathrm{Rh}_{x}^{0}+\mathrm{OH}+2 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{Rh}^{1}(\mathrm{CO})_{2}+(1 / 2) \mathrm{H}_{2}(\mathrm{~g})$ occurs. This reaction leads to a significant structural degradation of oxide-supported Rh catalysts. (2) The oxidation process above can be reversed by $\mathrm{H}_{2}(\mathrm{~g})$ addition to $\mathrm{Rh}^{\mathrm{l}}(\mathrm{CO})_{2}$ on either $\mathrm{Al}_{2} \mathrm{O}_{3}$ or SiO_{2} supports. (3) The oxidation process in (1) above does not exhibit a deuterium kinetic isotope effect. (4) The H_{2}-induced reduction of $\mathrm{Rh}^{1}(\mathrm{CO})_{2}$ to $\mathrm{Rh}^{0}{ }_{x}$ depends upon the presence of $\mathrm{Rh}^{0}{ }_{x}$ sites to provide H (ads) species in a spillover mechanism. (5) Direct spectroscopic evidence for the specific involvement of isolated surface OH groups in the oxidation of $\mathrm{Rh}^{0}{ }_{x}$ sites to Rh^{1} sites has been obtained.

Acknowledgment. We acknowledge, with thanks, the support of this work by the Office of Basic Energy Sciences, DOE. One of us (P.B.) is grateful for a supported educational leave from Alcoa. Another (D.P.) acknowledges with thanks the support of the NSF Eastern European Program, Grant. No. INT-8513805.

Registry No. Rh, 7440-16-6; CO, 630-08-0.

Methoxyethylene Ozonide: Analysis of the Structure and Anomeric Effect by Microwave Spectroscopy and ab Initio Techniques ${ }^{1}$

Marabeth S. LaBarge, ${ }^{\ddagger}$ Helmut Keul, ${ }^{\dagger}{ }^{\dagger}$ Robert L. Kuczkowski, ${ }^{* \ddagger}$ Markus Wallasch, ${ }^{\S}$ and Dieter Cremer*§

Contribution from the Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, and Lehrstuhl für Theoretische Chemie, Universität Köln, D-5000 Köln 41, Federal Republic of Germany. Received July 8, 1987

Abstract

Fifteen isotopic species of methoxyethylene ozonide (3-methoxy-1,2,4-trioxolane) were synthesized and their microwave spectra assigned. The dipole moment was determined as 1.99 (4) D. The structure was determined from the rotational constants by both least-squares (r_{0}) and Kraitchman substitution $\left(r_{s}\right)$ methods. Methoxyethylene ozonide has a peroxy envelope ring conformation and an axial methoxy substituent with a short $\mathrm{C}-\mathrm{OCH}_{3}$ bond. The methoxy group exhibits an unusual orientation anti to the ring hydrogen placing it over the ozonide ring. Ab initio calculations were performed to provide additional insights on the structural features. Both experimental and theoretical results are in accord with the anomeric and exo-anomeric effects.

The anomeric effect is a stereoelectronic phenomenon ${ }^{2,3}$ which influences molecular conformations ${ }^{4,5}$ and reactivities ${ }^{6-11}$ of a wide range of species. This effect refers to the preference of an electronegative substituent to adopt an axial rather than the sterically favored equatorial orientation in heterocyclic rings. ${ }^{3}$ A related stereoelectronic effect is the exo-anomeric effect. It is defined as the preference of R in OR (alkoxy) substituents for a gauche orientation relative to the ring heteroatom (X) in $\mathrm{R}-\mathrm{X}-\mathrm{C}-\mathrm{OR}$ moieties. The anomeric and exo-anomeric effects have the same electronic origin associated with two-electron interactions between antibonding orbitals and filled bonding or nonbonding orbitals.

Concomitant with these conformational tendencies are significant changes in bond lengths from "normal" based on simple inductive effects by electronegative substituents. Numerous X-ray crystallographic investigations of carbohydrates have revealed a lengthening of the exocyclic $\mathrm{C}-\mathrm{X}$ bonds when X is halogen and shortening when X is oxygen. Jeffrey and Pople ${ }^{12}$ and others ${ }^{13-15}$ have used ab initio molecular orbital techniques to study carbohydrate related moieties in order to correlate theoretical and experimental structural data.

[^0]A number of experimental and theoretical studies of fluoroozonides and other substituted ozonides have also provided data

[^1]on the anomeric effect in five-membered ring systems. ${ }^{16-22}$ In parallel with carbohydrate-pyranose systems, the fluorine substituents in fluorcozonides were axially oriented, and the C-F bonds were some $0.03-0.04 \AA$ longer than normal. This was rationalized by an anomeric interaction involving the fluorine atoms and the oxygens in the ring.

Although extensive structural investigations have been performed on carbohydrate systems, ${ }^{23}$ far fewer structures have been reported for ring compounds such as 2 -alkoxy-1,3-dioxolanes containing two endocyclic oxygen atoms bonded to a carbon bearing an alkoxy substituent. ${ }^{24,25}$ This has precluded a correlation of endocyclic and exocyclic $\mathrm{C}-\mathrm{O}$ bond lengths in such compounds. With the recent synthesis of the first alkoxy ozonide, ${ }^{26}$ methoxyethylene ozonide (3-methoxy-1,2,4-trioxolane, $\mathrm{MeO}-\mathrm{Oz}$), the opportunity was provided to study a compound containing the $\mathrm{O}-\mathrm{C}(\mathrm{OR})-\mathrm{O}$ moiety. Insights from an investigation of the prototype $\mathrm{MeO}-\mathrm{Oz}$ would have implications for 2-alkoxy-1,3-dioxolanes whose conformational equilibria have been extensively studied. It was also attractive to compare the structural parameters and anomeric effect between $\mathrm{MeO}-\mathrm{Oz}$ and fluoroozonides and to complement a detailed microwave structural study of $\mathrm{MeO}-\mathrm{Oz}$ with insights from ab initio calculations.

Experimental Section

Instrumentation. Microwave spectra were recorded in the range $26.5-40.0 \mathrm{GHz}$ with a Hewlett-Packard 8460A Stark modulated spectrometer. Radio frequency microwave double resonance (RFMWDR) spectra of the a-type R-branch transitions ($K_{\mathrm{p}}=3$) were obtained with a tunable amplitude modulated radio frequency source from $1-20 \mathrm{MHz}$ at $1-3 \mathrm{~W}$ output. All microwave data were collected with a PDP-11/23 computer interfaced to the spectrometer. Such signal averaging techniques enhanced the spectral sensitivity and resolution, especially for the low enriched isotopic species. Frequency measurements at pressures of $10-15 \mathrm{mTorr}$ were accurate to $\pm 0.02 \mathrm{MHz}$. The spectrometer cells were cooled with dry ice to between -30 to $-40^{\circ} \mathrm{C}$ and preconditioned with the sample. This increased the decomposition half-life of $\mathrm{MeO-Oz}$ to typically $15-20 \mathrm{~min}$.

Theoretical Methods. Complete geometry optimizations of $\mathrm{MeO}-\mathrm{Oz}$ have been carried out at the Hartree-Fock (HF)/STO-3G and the HF/4-31G level of theory ${ }^{27}$ employing a newly developed program for calculating analytic energy gradients for puckered rings. ${ }^{28}$ This is based on the use of the ring puckering coordinates (puckering amplitudes q and pseudorotation phase angles ϕ) defined by Cremer and Pople. ${ }^{29}$ The ring puckering coordinates are the appropriate internal coordinates to assess the degree and mode of ring puckering, to quantitatively relate different ring conformations, to describe conformational processes in ring molecules, and to determine ring substituent positions. ${ }^{29.30}$

[^2]In order to assess couplings between conformational modes of the ozonide ring (pseudorotation) and those of the MeO substituent (rotation at the $\mathrm{C}-\mathrm{OMe}$ and the $\mathrm{CO}-\mathrm{Me}$ bond), geometry optimizations for nine fixed values of the dihedral angle $\tau(\mathrm{HC}-\mathrm{OMe})=\tau$ have been carried out at the HF/STO-3G level. Investigation of the molecular energy dependence of τ suggested three rotational minima 1,2, and 3. These

60° (exo Me)

2
180° (endo Me)

3
-60° (exo Me)
minima have been confirmed (a) by complete geometry optimizations including q, ϕ, and τ (33 geometrical variables) at the HF/STO-3G level and (b) by repeating these calculations at the HF/4-31G level.

For the most stable $\mathrm{MeO}-\mathrm{Oz}$ conformation a single-point $\mathrm{HF} / 6-$ 31G*//HF/4-31G calculation has been carried out in order to investigate electronic and steric interactions between the MeO substituent and the ozonide ring. For this purpose, molecular orbitals (MO), the total electron distribution $\rho(\mathbf{r})$, and its associated Laplace field $\nabla^{2} \rho(\mathbf{r})$ have been analyzed by using the program COLOGNE, ${ }^{31}$ which contains large parts of GAUSSIAN $82 .{ }^{32}$

Syntheses. In previous papers the synthesis and purification of MeO Oz from the ozonolysis of styrene ${ }^{26}$ or methyl vinyl ether ${ }^{33}$ in methyl formate were reported. Since both of these reactions also produced inseparable volatile impurities which gave interfering lines in the microwave spectrum, a new synthesis was developed. Typically, $1-5 \mathrm{mmol}$ of p-nitro- α-ethoxystyrene ${ }^{34}$ (4) were ozonized to completion in $2-8 \mathrm{~mL}$

of HCOOCH_{3} at $-78^{\circ} \mathrm{C}$ to give $\mathrm{MeO-Oz}$ and an involatile ester residue, ethyl p-nitrobenzoate (5). A slow ozone flow rate of $0.04-0.08 \mathrm{mmol}$ / $\min \mathrm{O}_{3}$ in O_{2} was used. After ozonolysis, the solution was warmed to $25^{\circ} \mathrm{C}$ and $\mathrm{MeO}-\mathrm{Oz}$ and HCOOCH_{3} were separated from 5 by distillation through a $-196^{\circ} \mathrm{C}$ trap with an active vacuum. $\mathrm{MeO}-\mathrm{Oz}$ was separated from the solvent by two successive distillations through traps held at $-41^{\circ} \mathrm{C}$ and $-196^{\circ} \mathrm{C}$. The purified ozonide was collected from the $-41^{\circ} \mathrm{C}$ traps and stored under vacuum at $-196^{\circ} \mathrm{C}$. Methyl formate comprised less than 1% of the purified ozonide sample as determined by NMR and microwave spectroscopy.

Isotopically labeled species were prepared from labeled ozone, labeled methyl formate, and/or labeled 4 except for $\mathrm{MeO}-\mathrm{Oz}-\mathrm{cis}$ - d_{1} and MeO Oz -trans- d_{1} which were made from deuteriated styrene. Labeled ozone was produced by the electric discharge of ${ }^{18} \mathrm{O}_{2} /{ }^{16} \mathrm{O}_{2}$ mixtures $(97.8 \%$ ${ }^{18} \mathrm{O}_{2}$, Monsanto) in the static ozone generator previously described. ${ }^{17.35}$ Standard techniques were employed to synthesize about $1-2 \mathrm{~mL}$ of various labeled methyl formate species in $>50 \%$ enrichment. All samples were dried and purified from methanol prior to ozonolyses by reaction with and distillation from $\mathrm{P}_{2} \mathrm{O}_{5}$. Enrichments were determined by microwave relative intensity measurements.
 was synthesized by ozonolysis in methyl formate- $d_{3} . \mathrm{HCOOCD}_{3}$ was prepared from the acid-catalyzed esterification of methanol- $d_{4}(>99.5 \%$ D, Aldrich) and formic acid. ${ }^{36}$

MeO-Oz-cis- $d_{1}\left(\underset{\mathrm{CHDOOCH}\left(\mathrm{OCH}_{3}\right) \mathrm{O}}{\mathrm{O}}\right)(80 \%)$ and MeO-Oz-trans $d_{1}\left(\widehat{\mathrm{CDHOOCH}\left(\mathrm{OCH}_{3}\right) \mathrm{O}}\right)(80 \%)$ were made from (E)-styrene- β - d_{1} and (Z)-styrene- β - d_{1}, respectively. The starting materials and synthesis of labeled styrene were previously reported. ${ }^{37.38}$ The labeled styrene used
(30) (a) Cremer, D. Isr. J. Chem. 1980, 20, 12. (b) Cremer, D. Fresenius Z. Anal. Chem. 1980, 304, 275. (c) Essën, H.; Cremer, D. Acta Crystallogr., Sect. B: Struct. Sci. 1984, B40, 418. (d) Cremer, D. Acta Crystallogr., Sect. B: Struct. Sci. 1984, B40, 498.
(31) Gauss, J.; Kraka, E.; Cremer, D. Cologne 87, Universitāt Kōln, 1987.
(32) Binkley, J. S.; Frisch, M. J.; DeFrees, D. J.; Raghavachari, K.; Whiteside, R. A.; Schlegel, H. B.; Fluder, E. M.; Pople, J. A. GAUSSIAN 82, Carnegie-Mellon University: Pittsburgh, PA, 1985.
(33) Keul, H.; Kuczkowski, R. L. J. Am. Chem. Soc. 1984, 106, 5370.
(34) Hanzlik, R. P.; Hilbert, J. M. J. Org. Chem. 1978, 43, 610.
(35) Lopata, A. D.; Kuczkowski, R. L. J. Am. Chem. Soc. 1981, 103, 3304.
(36) Buehler, C. A.; Pearson, D. E. Survey of Organic Syntheses; Wiley Interscience: New York, 1970; Vol. 1, p 802.
here was obtained from that work. The ozonides obtained were 80% cis: 20% trans from the (E)-styrene and 80% trans: 20% cis from the (Z)-styrene. ${ }^{39}$

MeO-Oz-gem- $d_{1}\left(\mathrm{CH}_{2} \mathrm{OOCD}\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right)(99 \%)$ was prepared from DCOOCH3 made from the acid-catalyzed esterification of formic acid- d_{1} ($99 \% \mathrm{D}, \mathrm{MSD}$ Isotopes) and methanol.
$\mathrm{MeO}-\mathrm{Oz}-5,5-\mathrm{d}_{2}\left(\mathrm{CD}_{2} \mathrm{OOCH}\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right)(99 \%)$ was made from the ozonolysis of p-nitro- α-ethoxystyrene- d_{2} in methyl formate. p-Nitro- α -ethoxystyrene- d_{2} was prepared from p-nitroacetophenone by analogy to methods described in the literature. ${ }^{34}$ The starting materials (Aldrich) were p-nitroacetophenone, $\mathrm{D}_{2} \mathrm{O}(99 \% \mathrm{D})$, and triethyl orthoformate. p-Nitroacetophenone- d_{3} was prepared by exchange of the normal species with acetic acid- $d_{1}\left(\mathrm{CH}_{3} \mathrm{COOD}\right)$ at $130^{\circ} \mathrm{C}$ for 24 h . Ethanol- $d_{1}(\mathrm{C}-$ $\mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OD}$) was prepared from $\mathrm{D}_{2} \mathrm{O}$ in excess triethyl orthoformate. p-Nitroacetophenone- d_{3} was refluxed in the triethyl orthoformate and ethanol $-d_{1}$ solution producing p-nitroacetophenone dimethyl ketal which was then converted to p-nitro- α-ethoxystyrene- d_{2} for ozonolysis.
$\mathrm{MeO}-\mathrm{Oz}-3,5,5-\mathrm{d}_{3}\left(\mathrm{CD}_{2} \mathrm{OOCD}\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right)(99 \%)$ was made from the ozonolysis of p-nitro- α-ethoxystyrene- d_{2} in DCOOCH_{3}.
$\mathrm{MeO-Oz-}{ }^{18} \mathrm{O}_{p}{ }^{-18} \mathrm{O}_{p}\left(\mathrm{CH}_{2}{ }^{18} \mathrm{O}^{18} \mathrm{OCH}\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right)(98 \%)$ was made from $97.8 \%{ }^{18} \mathrm{O}_{3}$ and methyl formate.
$\mathrm{MeO-Oz}-{ }^{18} \mathrm{O}_{p}\left(\mathrm{C}_{H}\right)\left(\mathrm{CH}_{2}{ }^{18} \mathrm{OOCH}\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right), \mathrm{MeO-Oz}{ }^{-18} O_{p}\left(C_{\text {methoxy }}\right)$ $\left(\mathrm{CH}_{2} \mathrm{O}^{18} \mathrm{OCH}\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right)$, $\mathrm{MeO-Oz}{ }^{-18} \mathrm{O}_{p}{ }^{-18} \mathrm{O}_{p}$, and n-MeO-Oz were produced simultaneously from labeled ozone ($40 \%{ }^{18} \mathrm{O}, 60 \%{ }^{16} \mathrm{O}$) and unlabeled methyl formate. Their relative intensities were consistent with the expected enrichment ratios of $24 \%, 24 \%, 16 \%$, and 36%, respectively.
$\mathrm{MeO}-\mathrm{Oz}^{18} \mathrm{O}_{e}\left(\mathrm{CH}_{2} \mathrm{OOCH}\left(\mathrm{OCH}_{3}\right)^{18} \mathrm{O}\right)(50 \%)$ was prepared by using $\mathrm{HC}^{18} \mathrm{OOCH}_{3}\left(50 \%{ }^{18} \mathrm{O}\right)$ which was made from the acid-catalyzed hydrolysis ($97.3 \% \mathrm{H}_{2}{ }^{18} \mathrm{O}$, MSD Isotopes) of trimethyl orthoformate. ${ }^{40}$ Dry HCl gas and anhydrous diglyme solvent were used in this synthesis to minimize dilution of the isotopic enrichment.
$\mathrm{MeO}-\mathrm{Oz}^{18} \mathrm{O}_{3}$ (ring) $\left(\mathrm{CH}_{2}{ }^{18} \mathrm{O}^{18} \mathrm{OCH}\left(\mathrm{OCH}_{3}\right)^{18} \mathrm{O}\right)$ (50%) was made from labeled ozone ($97.8 \%{ }^{18} \mathrm{O}_{2}$, Monsanto) and $\mathrm{HC}^{18} \mathrm{OOCH}_{3}(50 \%$ ${ }^{18} \mathrm{O}$).
$\mathrm{MeO}-\mathrm{Oz}^{18} \mathrm{O}_{\text {methoxy }}\left(\mathrm{CH}_{2} \mathrm{OOCH}\left({ }^{18} \mathrm{OCH}_{3}\right) \mathrm{O}\right)$ (50%) was made from $\mathrm{HCO}^{18} \mathrm{OCH}_{3}\left(50 \%{ }^{18} \mathrm{O}\right)$ prepared by the acid-catalyzed esterification of formic acid with ${ }^{18} \mathrm{O}$ labeled methanol. $\mathrm{CH}_{3}{ }^{18} \mathrm{OH}\left(50 \%{ }^{18} \mathrm{O}\right)$ was made by diluting 1.0 g of $\mathrm{CH}_{3}{ }^{18} \mathrm{OH}\left(95 \%{ }^{18} \mathrm{O}\right.$, Cambridge Isotopes) with an equimolar amount of unlabeled $\mathrm{CH}_{3} \mathrm{OH}$.
$\mathrm{MeO}-\mathrm{Oz}^{13} \mathrm{C}_{\text {ring }}\left(\mathrm{OCH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{OO}^{13} \mathrm{CH}\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right)(50 \%)$ was prepared by using $\mathrm{H}^{13} \mathrm{COOCH}_{3}\left(50 \%{ }^{13} \mathrm{C}\right.$) obtained by diluting 1.0 g of $\mathrm{H}^{13} \mathrm{COOCH}_{3}\left(99 \%{ }^{13} \mathrm{C}\right.$, ICON Services) with an equimolar amount of unlabeled methyl formate.

MeO-Oz- ${ }^{13} C_{\text {methoxy }}\left(\mathrm{CH}_{2} \mathrm{OOCH}\left(\mathrm{O}^{13} \mathrm{CH}_{3}\right) \mathrm{O}\right)$ (75%) was made from methyl formate-methox $\mathrm{y}^{-13} \mathrm{C}\left(75 \%{ }^{13} \mathrm{C}\right)$ prepared by the acid-catalyzed esterification of formic acid with ${ }^{13} \mathrm{C}$ labeled methanol. The latter was obtained by diluting 1.0 g of ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}\left(99 \%{ }^{13} \mathrm{C}\right.$, Cambridge Isotopes) with 0.350 g of $\mathrm{CH}_{3} \mathrm{OH}$.

Spectra. The spectrum was characteristic of a near prolate asymmetric top with $\kappa=-0.92$ and $\mu_{\mathrm{a}}, \mu_{\mathrm{b}}$, and μ_{c} selection rules. This resulted in prominent degenerate μ_{b} and μ_{c} Q-branch series with band origins roughly at intervals of $(A-(B+C) / 2)(2 K+1)$ and $\mu_{\mathrm{a}} \mathrm{R}$-branch clusters separated by $(B+C)$. The spectral regions between these intervals were generally sparse except for occasional unassigned lines which had weak-to-moderately strong intensities. Several series of vibrational satellites accompanied each ground state Q-branch series on the high frequency side.

The initial assignment began with rigid rotor fits of high- $J(J>10)$ $K_{\mathrm{p}}=6 \rightarrow 7 \mathrm{Q}$-branch transitions after carefully testing the assignment by shifting up and down in J. These fits were used to predict and measure Q -branch transitions for two other series in the accessible spectral region. Centrifugal distortion fits were then performed by using the program ZFAP6. ${ }^{41}$ The Q-branch transitions were fit to $A-C, \kappa$, and

[^3]Table I. Assigned Rotational Transitions of the Normal Isotopic Species of $\mathrm{MeO}-\mathrm{Oz}$

transition	$\begin{gathered} \nu \text { (obsd) }, \\ \text { MHz } \end{gathered}$	$\begin{gathered} \nu(\text { calcd })- \\ \nu(\text { obsd })^{a} \end{gathered}$
5(2,4)-4(1,3)	30652.83	0.038
5(3,3)-4(2,3)	36027.68	0.169
5(3,2)-4(2,2)	35984.31	-0.170
$6(1,6)-5(0,5)$	30084.18	0.044
$6(0,6)-5(0,5)$	28531.18	0.008
$6(1,6)-5(1,5)$	28314.26	-0.085
$6(1,5)-5(1,4)$	28906.08	0.052
$7(1,7)-6(0,6)$	34576.09	-0.006
$7(1,6)-6(0,6)$	37341.44	-0.040
$7(0,7)-6(0,6)$	33245.14	-0.027
$7(2,6)-6(2,5)$	33383.11	0.017
$7(2,5)-6(2,4)$	33544.47	-0.066
$7(3,5)-6(3,4)$	33428.55	-0.070
$7(3,4)-6(3,3)$	33435.61	0.123
$7(4, X)-6(4, X){ }^{\text {b }}$	33421.98	0.050
$7(5, X)-6(5, X)$	33417.91	-0.047
$7(6, X)-6(6, X)$	33415.81	-0.006
$8(0,8)-7(1,7)$	33613.15	0.170
$8(1,7)-7(2,5)$	32193.24	0.152
$8(1,8)-7(0,7)$	39058.95	-0.031
$8(0,8)-7(0,7)$	37944.31	-0.019
$8(1,8)-7(1,7)$	37728.06	-0.112
$8(2,7)-7(2,6)$	38141.66	0.059
$9(0,9)-8(1,7)$	37970.90	0.120
$10(6, X)-10(5, X)^{b . c}$	26695.51	$-0.020^{\text {d }}$
$11(6, X)-11(5, X)$	26686.95	0.052
$12(7, X)-12(6, X)$	31548.85	0.009
$13(7, X)-13(6, X)$	31540.65	0.039
$15(7, X)-15(6, X)$	31517.61	0.026
$16(7, X)-16(6, X)$	31501.98	0.046
26(7,20)-26(6,21)	31098.83	0.047
26(7,19)-26(6,20)	31063.99	-0.053
12(8,X)-12(7,X)	36413.36	0.000
$15(8, X)-15(7, X)$	36394.15	0.018
18(8,X)-18(7,X)	36358.75	0.010
$19(8, \mathbf{X})-19(7, X)$	36342.17	-0.022
20(8,X)-20(7,X)	36322.63	-0.022

${ }^{a}$ Calculated from a centrifugal distortion fit of 109 transitions. ${ }^{b} \mathbf{X}$ denotes both values of K_{o} where $K_{\mathrm{o}}=J-K_{\mathrm{p}}$ and $K_{\mathrm{o}}=J+1-K_{\mathrm{p}}$. ${ }^{c}$ Each transition represents four μ_{b} and μ_{c} Q-branch lines which were not resolvable. ${ }^{d}$ Differences listed for the nearly degenerate transitions are the average of the four calculated differences.
several fourth-order centrifugal distortion constants. The fit with the smallest root-mean-square (rms) deviation was assumed to be correct. Next, calculated values of $A-C$ and κ for various model conformations of $\mathrm{MeO}-\mathrm{Oz}$ were plotted versus τ in 20° increments to determine the orientation of the methoxy group. The model having an axial methoxy substituent and methyl group over the ring was in best agreement with the experimental Q-branch data. By using the predicted A rotational constant from this model and the values of $A-C$ and κ from the best Q-branch fit, the $\mu_{\mathrm{a}} \mathrm{R}$-branch $K_{\mathrm{p}}=3 \mathrm{~K}$-doublet transitions were predicted and found by using RFMWDR. Utilizing all the experimental data to obtain good estimates of A, B, and C, the remaining μ_{a} and weaker μ_{b} and μ_{c} R-branch transitions could then be assigned guided by their relative intensities and Stark effects.

A centrifugal distortion fit for 109 transitions (representing 57 uniquely resolvable lines) of the parent isotopic species was performed. The rms deviation was 59 kHz for the quartic fit to three rotational constants and five centrifugal distortion constants using the Watson-S reduction, representation I^{t}. A selection of the assigned transitions is given in Table I. Centrifugal distortion effects are small with the largest deviation from a rigid rotor model of about 3 MHz for a $J=20 \rightarrow 20$ transition. The rotational constants and centrifugal distortion constants for $n-\mathrm{MeO}-\mathrm{Oz}$ are listed in Table I. No internal rotation splittings from the methyl group were observed.

The assignment of the isotopic species also commenced with Q-branch centrifugal distortion fits. The values of $A-C$ and κ were then used in a modified version of the STRFIT structure-fitting program ${ }^{42}$ to bootstrap toward an improved structure which in turn aided in R-branch predic-
(42) Schwendeman, R. H. In Critical Evaluation of Chemical and Physical Structural Information; Lide, D. R., Paul, M. A., Eds.; National Academy of Sciences: Washington, DC, 1974; pp 74-115.

Table II. Rotational Constants of Isotopic Species of $\mathrm{MeO}-\mathrm{Oz}^{a}$

species	A, MHz	B, MHz	C, MHz	no. of assigned transtns	rms deviatn of fit, $\mathbf{M H z}$
normal ${ }^{\text {b }}$	4815.386 (3)	2435.852 (3)	2336.675 (3)	109	0.059
OCD_{3}	4528.946 (4)	2261.995 (5)	2194.380 (5)	110	0.036
gem- ${ }_{1}$	4649.811 (4)	2402.231 (4)	2324.870 (4)	92	0.035
trans-d ${ }_{1}$	4796.858 (9)	2369.006 (10)	2271.515 (8)	79	0.043
cis-d d_{1}	4697.108 (8)	2371.327 (8)	2294.791 (8)	96	0.038
5,5-d ${ }_{2}$	4679.612 (4)	2307.999 (4)	2233.467 (4)	119	0.035
3,5,5-d d_{3}	4522.546 (4)	2274.161 (4)	2225.200 (4)	120	0.028
${ }^{18} \mathrm{O}_{\mathrm{p}}{ }^{18} \mathrm{O}_{p}$	4607.487 (3)	2379.745 (4)	2273.670 (3)	133	0.031
${ }^{18} \mathrm{O}_{e}$	4692.028 (6)	2430.848 (7)	2303.247 (7)	101	0.058
${ }^{18} O_{p}\left(C_{H}\right)$	4729.661 (15)	2401.479 (19)	2290.611 (14)	53	0.073
${ }^{18} O_{p}\left(C_{\text {methoxy }}\right)$	4686.973 (9)	2416.213 (10)	2315.558 (12)	73	0.074
${ }^{18} \mathrm{O}_{3}($ ring $)$	4486.042 (6)	2376.398 (6)	2240.697 (7)	96	0.055
${ }^{18} \mathrm{O}_{\text {methoxy }}$	4800.077 (7)	2376.054 (7)	2283.027 (8)	104	0.054
${ }^{13}{ }^{13} \mathrm{C}_{\text {methoxy }}{ }^{1}$	4771.800 (8)	2389.909 (8)	2301.067 (8)	110	0.073
${ }^{13} \mathrm{Cring}_{\text {ring }}\left(\mathrm{OCH}_{3}\right)$	4782.944 (7)	2428.425 (8)	2334.265 (8)	78	0.061

${ }^{a}$ Uncertainties in parentheses represent one standard deviation in the fit. ${ }^{b}$ The centrifugal distortion constants (in kHz) for the normal species are
$D_{\mathrm{J}}=0.801(25), D_{\mathrm{JK}}=-1.403(9), D_{\mathrm{K}}=3.389(37), d_{1}=0.077(4), d_{2}=-0.033$ (5).
tions and assignments. For all isotopically labeled species, at least two pairs of μ_{a} R-branch $K_{\mathrm{p}}=3$ transitions had to be identified by using RFMWDR to guarantee an unambiguous assignment. The assignments of the species which were enriched to at least 50% were simplified by using signal averaging techniques to follow Stark effects and to find RFMWDR transitions. The assignment of the ${ }^{18} \mathrm{O}_{\mathrm{p}}\left(\mathrm{C}_{\mathrm{H}}\right)$ and ${ }^{18} \mathrm{O}_{\mathrm{p}}$ ($\mathrm{C}_{\text {methoxy }}$) species which were 25% enriched proved to be more difficult. For these species, the centrifugal distortion constants were fixed at the normal species values enabling the A, B, and C rotational constants to be determined from two RFMWDR $K_{\mathrm{p}}=3$ R-branch and the Q-branch transitions. This predicted the remaining R-branch transitions within 1 $\mathbf{M H z}$. Rotational constants for all the isotopic species are given in Table II. A complete list of the assigned transitions and centrifugal distortion constants for all isotopic species is available (Tables $\mathrm{S} 1-\mathrm{S} 16$, Supplementary Material.) An inspection of the distortion constants for the 14 species shows them to have similar signs and magnitudes. This served as an important criterion is evaluating the spectral assignments of the isotopic species.

Dipole Moment. The second-order Stark effects for the $M=1$ components of five transitions were measured. The values of $\Delta \nu / E^{2}$ were typically determined at two to four electric field values. The richness of the spectrum precluded the tracking of Stark lobes over further distances. A least-squares fit of $\Delta \nu / E^{2}$ using the calculated second-order Stark coefficients resulted in the dipole components $\mu_{\mathrm{a}}=1.527$ (10) D, $\mu_{\mathrm{b}}=$ 0.522 (60) D, $\mu_{\mathrm{c}}=1.169$ (30) D, and $\mu_{\text {toxal }}=1.993$ (40) D. These Stark coefficients are available (Table S17, Supplementary Material). There is good agreement $(\pm 1 \%)$ between the observed and calculated values of $\Delta \nu / E^{2}$ except for $M=1$ of the $7(2,6)-6(2,5)$ transition which differ by 9%. The reason for this discrepancy is unclear. No other low- J transitions with resolved Stark effects could be measured between 26.5-40 GHz to supplement the existing data. The electric field was calibrated with the $J=2 \rightarrow 3, M=2$ transition of OCS at $36488.814 \mathrm{MHz} .{ }^{43}$

Structure. Since $\mathrm{MeO}-\mathrm{Oz}$ has no elements of symmetry, $3 \mathrm{~N}=39$ atomic coordinates equivalent to $3 \mathrm{~N}-6$ internal coordinates are needed to define the structure. In principle, the coordinates can be calculated by using either a standard least-squares fitting of observed moments of inertia (r_{0} method) or by using Kraitchman's equations (r_{s} method).

The available data set consisted of 30 moments of inertia from the normal and single-substituted species, 18 moments of inertia from multiple-substituted species, three first moment equations ($\sum m_{i} a_{i}=0$, etc.), and three product of inertia equations ($\sum m_{i} a_{i} b_{i}=0$, etc). Because the multiply substituted species do not always provide independent inertial data and because no isotopic data are available to locate $\mathrm{C}_{3}, \mathrm{H}_{11}$, H_{12}, and H_{13}, a few structural assumptions were included to utilize the method of predicate observables or diagnostic least-squares. ${ }^{44}$ (See Figures 1 and 2 for the numbering of the atoms.) The assumptions included $\mathrm{C}_{3}-\mathrm{H}_{9}, \mathrm{C}_{3}-\mathrm{H}_{10}$, and methyl $\mathrm{C}-\mathrm{H}$ distances of 1.090 A , bond angles about the methyl group of 109.47°, and a $\mathrm{C}_{1}, \mathrm{H}_{13}$ nonbonded distance of $2.665 \AA$ which is virtually identical with the value 2.664 determined by ab initio methods (see below). This latter constraint inhibited the methyl group from freely rotating in the fitting process and facilitated convergence. When this assumption was varied from 2.515

[^4]

Figure 1. Structure of $\mathrm{MeO}-\mathrm{Oz}$, peroxy envelope conformation.

Figure 2. Structure of $\mathrm{MeO}-\mathrm{Oz}$, projection from top of ring.
Table III. Principal Axis Coordinates (\AA) of $\mathrm{MeO}-\mathrm{Oz}$

atom	$a_{0}{ }^{a}$	$a_{\mathrm{s}}{ }^{b}$	$b_{\mathrm{o}}{ }^{a}$	$b_{\mathrm{s}}{ }^{b}$	$c_{0}{ }^{a}$	$c_{\mathrm{s}}{ }^{b}$
C_{1}	-0.2903	-0.2701	-0.3773	-0.3764	0.7617	0.7583
O_{2}	0.4425	0.4467	-1.1798	-1.1800	-0.1487	-0.1259
C_{3}	1.6023	1.6023	-0.4195	-0.4195	-0.4926	-0.4926
O_{4}	1.1629	1.1626	0.9139	0.9115	-0.3954	-0.4017
O_{5}	0.4389	0.4402	0.8305	0.8295	0.8836	0.8826
O_{6}	-1.5892	-1.5894	-0.2365	-0.2252	0.3596	0.3567
C_{7}	-1.7840	-1.7832	0.3929	0.3867	-0.9227	-0.9181
H_{8}	-0.3587	-0.3582	-0.8140	-0.8154	1.7583	1.7575
H_{9}	2.4127	2.4129	-0.6273	-0.6317	0.2058	0.1748
H_{10}	1.8446	1.8446	-0.6102	-0.6076	-1.5378	-1.5381

${ }^{a}$ From least-squares fit of inertial equations and assumed structural parameters described in text. ${ }^{b}$ Kraitchman single substitution except for $\mathrm{C}_{3}, \mathrm{H}_{8}, \mathrm{H}_{9}$, and H_{10}, see text.
to $2.915 \AA$, it did not affect the final structure except for the methyl hydrogen torsional angles. It was also found that the removal of the moments of inertia of the OCD_{3} species improved the rms deviation between observed and calculated parameters from 0.0112 to 0.0049 amu \AA^{2}. It seems probable that triple deuteriation has significantly changed the vibrational amplitudes in the methoxy group, degrading the fitting

Table IV. Selected r_{0} and $r_{\mathbf{1}}$ Structural Parameters of $\mathrm{MeO}-\mathrm{Oz}$ from Coordinates in Table III

param ${ }^{\text {a }}$	ro	$r_{s}{ }^{\text {b }}$	param ${ }^{\text {a }}$	r_{0}	$r_{\text {s }}{ }^{\text {b }}$
$\mathrm{C}_{1}-\mathrm{O}_{2}$	1.418 (8) ${ }^{\text {c }}$	1.394 (7) ${ }^{\text {d }}$	$\angle \mathrm{C}_{1}-\mathrm{O}_{2}-\mathrm{C}_{3}$	105.8 (4)	105.8 (3)
$\mathrm{C}_{1}-\mathrm{O}_{5}$	1.416 (9)	1.406 (5)	$\angle \mathrm{O}_{2}-\mathrm{C}_{3}-\mathrm{O}_{4}$	103.5 (3)	103.6 (2)
$\mathrm{C}_{1}-\mathrm{O}_{6}$	1.367 (7)	1.387 (6)	$\angle \mathrm{C}_{3}-\mathrm{O}_{4}-\mathrm{O}_{5}$	99.2 (2	99.0 (2)
$\mathrm{C}_{7}-\mathrm{O}_{6}$	1.442 (5)	1.427 (5)	$4 \mathrm{O}_{4}-\mathrm{O}_{5}-\mathrm{C}_{1}$	103.1 (3)	102.6 (2)
$\mathrm{C}_{3}-\mathrm{O}_{4}$	1.407 (5)	1.406 (4)	$\angle \mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{O}_{2}$	105.8 (5)	106.9 (4)
$\mathrm{C}_{3}-\mathrm{O}_{2}$	1.429 (5)	1.430 (4)	$\angle \mathrm{O}_{2}-\mathrm{C}_{1}-\mathrm{O}_{6}$	111.1 (5)	111.6 (4)
$\mathrm{O}_{4}-\mathrm{O}_{5}$	1.472 (4)	1.474 (4)	$\angle \mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{O}_{6}$	115.3 (7)	114.4 (4)
$\tau\left(\mathrm{C}_{3}-\mathrm{O}_{4}-\mathrm{O}_{5}-\mathrm{C}_{1}\right)$	-44.2	-43.8	$\tau\left(\mathrm{O}_{2}-\mathrm{C}_{1}-\mathrm{O}_{6}-\mathrm{C}_{7}\right)$	-60.7	-60.8
$\tau\left(\mathrm{O}_{4}-\mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{O}_{6}\right)$	-97.1	-97.6	$\tau\left(\mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{O}_{2}-\mathrm{C}_{3}\right)$	1.8	1.1

${ }^{a}$ Bond distances in \AA and bond angles in deg. See Figure 1 and 2 for numbering of atoms. ${ }^{b}$ Kraitchman single substitution using r_{0} coordinates of $\mathrm{C}_{3}, 109.47^{\circ}$ angles about the methyl group, and $\mathrm{C}-\mathrm{H}$ bonds of $1.090 \AA$. ${ }^{c}$ Uncertainty from propagation of coordinate uncertainties from the least-squares fitting. ${ }^{d}$ Uncertainty from propagation of the Costain uncertainties ($0.0015 \AA / x_{8}$) in the coordinates.

Table V. Structural Parameters of $\mathrm{MeO}-\mathrm{Oz}$ from Spectroscopic ${ }^{a}$ and ab Initio ${ }^{b}$ Analysis

bond	spectrosc ${ }^{\text {a }}$	ab initio ${ }^{\text {b }}$ conformer			angle	spectrosc ${ }^{\text {a }}$	ab initio ${ }^{\text {b }}$ conformer			dihedral angle	spectrosc ${ }^{\text {a }}$	ab initio ${ }^{\text {b }}$ conformer		
		2	1	3			2	1	3			2	1	3
$\mathrm{C}_{1}-\mathrm{O}_{2}$	1.406 (20)	1.421	1.398	1.421	$\mathrm{C}_{1}-\mathrm{O}_{2}-\mathrm{C}_{3}$	105.8 (4)	110.0	109.2	108.9	$\mathrm{C}_{1}-\mathrm{O}_{2}-\mathrm{C}_{3}-\mathrm{O}_{4}$	-30.2	-22.1	-4.1	-9.7
$\mathrm{C}_{1}-\mathrm{O}_{5}$	1.411 (14)	1.448	1.435	1.414	$\mathrm{O}_{2}-\mathrm{C}_{3}-\mathrm{O}_{4}$	103.6 (4)	103.5	104.7	104.2	$\mathrm{O}_{2}-\mathrm{C}_{3}-\mathrm{O}_{4}-\mathrm{O}_{5}$	44.9	37.8	27.6	31.2
$\mathrm{C}_{1}-\mathrm{O}_{6}$	1.377 (17)	1.359	1.370	1.371	$\mathrm{C}_{3}-\mathrm{O}_{4}-\mathrm{O}_{5}$	99.1 (3)	101.5	102.7	102.3	$\mathrm{C}_{3}-\mathrm{O}_{4}-\mathrm{O}_{5}-\mathrm{C}_{1}$	-44.0	-40.8	-40.8	-42.1
$\mathrm{C}_{7}-\mathrm{O}_{6}$	1.435 (13)	1.443	1.438	1.438	$\mathrm{O}_{4}-\mathrm{O}_{5}-\mathrm{C}_{1}$	102.9 (5)	104.5	102.3	103.1	$\mathrm{O}_{4}-\mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{O}_{2}$	26.3	27.2	38.3	35.9
$\mathrm{C}_{3}-\mathrm{O}_{4}$	1.406 (6)	1.433	1.442	1.438	$\mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{O}_{2}$	106.3 (10)	103.4	103.8	104.0	$\mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{O}_{2}-\mathrm{C}_{3}$	1.4	-3.5	-21.7	-16.7
$\mathrm{C}_{3}-\mathrm{O}_{2}$	1.430 (6)	1.423	1.431	1.429	$\mathrm{O}_{2}-\mathrm{C}_{1}-\mathrm{O}_{6}$	111.4 (8)	112.8	109.2	112.0	$\mathrm{C}_{3}-\mathrm{O}_{2}-\mathrm{C}_{1}-\mathrm{O}_{6}$	127.2	119.9	98.3	101.8
$\mathrm{O}_{4}-\mathrm{O}_{5}$	1.474 (8)	1.467	1.466	1.466	$\mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{O}_{6}$	114.8 (12)	113.8	112.4	109.8	$\mathrm{O}_{4}-\mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{O}_{6}$	-97.4	-95.5	-79.5	-84.1
$\mathrm{C}_{1}-\mathrm{H}_{8}$	1.093 (9)	1.069	1.074	1.074	$\mathrm{C}_{1}-\mathrm{O}_{6}-\mathrm{C}_{7}$	115.8 (4)	120.6	118.1	117.9	$\mathrm{O}_{2}-\mathrm{C}_{1}-\mathrm{O}_{6}-\mathrm{C}_{7}$	-60.7	-56.3	-178.4	64.5
$\mathrm{C}_{3}-\mathrm{H}_{9}$	$1.090^{\text {c }}$	1.074	1.073	1.073	$\mathrm{O}_{2}-\mathrm{C}_{1}-\mathrm{H}_{8}$	113.0 (9)	111.5	111.0	109.2	$\mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{O}_{6}-\mathrm{C}_{7}$	60.0	61.1	63.9	179.5
$\mathrm{C}_{3}-\mathrm{H}_{10}$	1.090^{c}	1.071	1.071	1.071	$\mathrm{O}_{2}-\mathrm{C}_{3}-\mathrm{H}_{10}$	109.0 (9)	110.2	110.8	110.9	$\mathrm{C}_{3}-\mathrm{O}_{2}-\mathrm{C}_{1}-\mathrm{H}_{8}$	-116.2	-118.0	-135.4	-131.7
$\mathrm{C}_{7}-\mathrm{H}_{11}$	1.090^{c}	1.074	1.074	1.074	$\mathrm{O}_{2}-\mathrm{C}_{3}-\mathrm{H}_{9}$	110.3 (5)	110.7	109.2	109.6	$\mathrm{C}_{1}-\mathrm{O}_{2}-\mathrm{C}_{3}-\mathrm{H}_{10}$	-144.2	-137.5	-119.6	-125.1
$\mathrm{C}_{7}-\mathrm{H}_{12}$	1.090°	1.077	1.083	1.078	$\mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{H}_{8}$	107.5 (9)	106.9	106.2	107.9	$\mathrm{C}_{1}-\mathrm{O}_{2}-\mathrm{C}_{3}-\mathrm{H}_{9}$	90.0	96.3	114.4	108.8
$\mathrm{C}_{7}-\mathrm{H}_{13}$	$1.090^{\text {c }}$	1.078	1.078	1.082	$\mathrm{O}_{4}-\mathrm{C}_{3}-\mathrm{H}_{9}$	112.1 (10)	110.5	110.7	110.7	$\mathrm{O}_{4}-\mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{H}_{8}$	147.6	145.0	155.4	151.9
					$\mathrm{O}_{4}-\mathrm{C}_{3}-\mathrm{H}_{10}$	107.4 (5)	108.1	107.4	107.5	$\mathrm{O}_{5}-\mathrm{O}_{4}-\mathrm{C}_{3}-\mathrm{H}_{10}$	160.1	154.6	145.4	149.0
					$\mathrm{H}_{9}-\mathrm{C}_{3}-\mathrm{H}_{10}$	113.9 (12)	113.4	113.7	113.5	$\mathrm{O}_{5}-\mathrm{O}_{4}-\mathrm{C}_{3}-\mathrm{H}_{9}$	-74.1	-80.8	-89.9	-86.6
					$\mathrm{O}_{6}-\mathrm{C}_{1}-\mathrm{H}_{8}$	103.9 (13)	108.3	113.8	113.7	$\mathrm{C}_{1}-\mathrm{O}_{6}-\mathrm{C}_{7}-\mathrm{H}_{11}$	179.5	178.7	178.0	178.2
					$\mathrm{O}_{6}-\mathrm{C}_{7}-\mathrm{H}_{11}$	109.47°	105.0	105.6	105.6	$\mathrm{C}_{1}-\mathrm{O}_{6}-\mathrm{C}_{7}-\mathrm{H}_{12}$	-59.5	-62.3	-59.4	-62.4
					$\mathrm{O}_{6}-\mathrm{C}_{7}-\mathrm{H}_{12}$	109.47°	110.3	110.6	110.4	$\mathrm{C}_{1}-\mathrm{O}_{6}-\mathrm{C}_{7}-\mathrm{H}_{13}$	60.5	60.0	62.7	59.5
					$\mathrm{O}_{6}-\mathrm{C}_{7}-\mathrm{H}_{13}$	$109.47^{\text {c }}$	110.2	110.4	110.5	$\mathrm{H}_{8}-\mathrm{C}_{1}-\mathrm{O}_{6}-\mathrm{C}_{7}(\tau)$	177.3	179.8	56.9	-59.7

${ }^{a}$ The average of the results in Table IV with uncertainties sufficient to encompass both calculations. Uncertainties in the dihedral angles are $\pm 1^{\circ}$. Bond distances in \AA and bond angles in deg. See Figures 1 and 2 for illustrations with spectroscopic parameters. ${ }^{b} \mathrm{HF} / 4-31 \mathrm{G}$ geometry. Conformers 1,2 , and 3 are illustrated in the Experimental Section. Conformer 2 is the lowest energy conformer (Table VI). ${ }^{\text {c }}$ Assumed value.
process. The quality of the final r_{0} fit was good (excluding the CD_{3} data) with the largest difference between observed and calculated moments being 0.01 amu \AA^{2}. The r_{0} coordinates calculated from the least-squares fit are given in Table III. Selected structural parameters for $\mathrm{MeO}-\mathrm{Oz}$ obtained from these coordinates are listed in Table IV. ${ }^{45}$

From the inertial data of nine singly substituted isotopic species, the substitution coordinates were calculated by using Kraitchman's equations and listed in Table III. There is reasonable agreement between the r_{0} and r_{1} coordinates except for the a coordinate of C_{1}, the b coordinate of O_{6}, and the c coordinates of O_{2} and H_{9}. These four differences range from 0.01 to $0.03 \AA$ which most likely result from the Kraitchman method's underestimation of the small coordinates of these atoms. ${ }^{46}$ Although the r_{0} method is probably more reliable in determining small coordinates, its accuracy (i.e., extent of vibration-rotation interactions) cannot be determined without a vibrational analysis.

Insufficient isotopic data are available to completely determine the structure by the Kraitchman method since $\mathrm{C}_{3}, \mathrm{H}_{11}, \mathrm{H}_{12}$, and H_{13} single substitution data are not available. To generate a partial r_{s} structure, the r_{0} coordinates for C_{3} and the available r_{3} coordinates were used. The methyl hydrogen coordinates were calculated by assuming tetrahedral geometry with $\mathrm{C}-\mathrm{H}$ distances of $1.090 \AA$. This partial r_{g} structure is given in Table IV. There are significant differences between several of the r_{0} and r_{3} structural parameters. For example, the $\mathrm{C}_{1}-\mathrm{O}_{2}$ and $\mathrm{C}_{1}-\mathrm{O}_{6}$ bond distances differ by 0.024 and $0.020 \AA$, respectively.

In view of the differences between the parameters computed by the two methods and the parameter uncertainties obtained by propagation of the coordinate uncertainties (see Table IV), we believe the average of these two structures (Table V) with uncertainties that encompass both calculations is the best way to report the structure of $\mathrm{MeO}-\mathrm{Oz}$. Although the physical relevance of the preferred structure in Table V is no longer clear, the parameters have generous uncertainties which most likely

[^5]

Figure 3. Pseudorotation cycle of $\mathrm{MeO}-\mathrm{Oz}(\mathrm{X}=\mathrm{MeO})$.
encompass the equilibrium structure. The structure of $\mathrm{MeO}-\mathrm{Oz}$ is shown in Figures 1 and 2.

Discussion

The structure of $\mathrm{MeO}-\mathrm{Oz}$ depicted in Figures 1 and 2 has several interesting features. The most apparent is the axial methoxy orientation and peroxy envelope conformation where O_{4} is puckered above the plane formed by the other ring atoms

Table VI. Ab Initio Energies for Conformations 1, 2, and 3 of the Methoxy Group ${ }^{a}$

basis		conformatn, $\tau(8,1,6,7)$	q	ϕ	$\begin{gathered} \text { abs } \\ \text { energy } \end{gathered}$	rel energy
STO-3G	1	52.3	0.389	83.7	-411.06786	0.41
	2	178.6	0.375	73.4	-411.068 52	0
	3	304.3	0.388	84.1	-411.06728	0.78
4-31G	1	56.9	0.387	101.8	-415.79428	2.16
	2	179.8	0.385	77.4	-415.79772	0
	3	300.2	0.386	94.6	-415.79283	3.07
6-31G* ${ }^{\text {b }}$	2	180.2	0.385	77.4	-416.41262	

${ }^{a}$ Absolute energies in hartree, relative energies in $\mathrm{kcal} / \mathrm{mol}$, puckering amplitude q in \AA, dihedral angle and pseudorotation phase angle in deg. ${ }^{b} 4-31 G$ geometry used.
$\left(\tau\left(\mathrm{O}_{5}-\mathrm{C}_{1}-\mathrm{O}_{2}-\mathrm{C}_{3}\right)=1.4^{\circ}\right)$. The experimentally determined pseudorotation phase angle ϕ is 70°, which is just 2° below the value of an ideal peroxy envelope ${ }^{47}$ (compare with Figure 3). The conformation of $\mathrm{MeO}-\mathrm{Oz}$ is similar to the one found for vinylidene fluoride ozonide ($\left.1,1-\mathrm{F}_{2} \mathrm{Oz}, \phi=67^{\circ}\right)^{47}$ where the puckering of the $\mathrm{O}-\mathrm{O}$ group enhances the anomeric interaction involving the fluorine atoms and the oxygens in the ring. ${ }^{18}$ By analogy, an anomeric interaction must also be present in $\mathrm{MeO}-\mathrm{Oz}$ involving the axial O_{Me} and one or more of the ring oxygen atoms.

A unique conformational feature is the location of the methyl group over the ring. This is the first clear evidence from structural data for such an orientation for an OR substituent on a heterocyclic ring. Typically in carbohydrates a methyl group in an alkoxy substituent is located gauche to the endocyclic oxygen while trans to the endocyclic carbon placing it outside the ring to minimize steric repulsions with methylene hydrogens. There is evidence based on a combination of dipole moment and NMR data in an analogous five-membered ring compound, 2 -meth-oxy-1,3-dioxolane, that the anti \rightarrow gauche equilibrium in solution favors the anti conformer placing the methyl group over the ring. ${ }^{48}$ The anti conformer 6 possesses two clinal $\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{Me}$ arrange-

6

7
ments ($\tau(\mathrm{OC}-\mathrm{OMe})=60^{\circ}$) thought to be more stable than antiperiplanar $\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{Me}\left(\tau(\mathrm{OC}-\mathrm{OMe})=180^{\circ}\right)$, whereas the gauche conformer 7 contains only one. This is the essence of the exo-anomeric effect.

Although the location of the methyl group in $\mathrm{MeO}-\mathrm{Oz}$ has been established, there is no microwave data to determine the internal rotation angle $\tau\left(\mathrm{C}_{1} \mathrm{O}_{6}-\mathrm{C}_{7} \mathrm{H}_{11.12 .13}\right)$ of this group. The orientation in Figure 2 was chosen since it is suggested by the ab initio calculations (see below) and since it staggers the methyl hydrogen atoms relative to the $\mathrm{C}_{1}-\mathrm{O}_{6}$ bond and eclipses them with respect to the ring $\mathrm{C}-\mathrm{O}$ bonds. Furthermore it allows for (attractive) intramolecular H, O interactions as discussed below.

In order to verify these assumptions, shed light on the structural parameters and anomeric effect, and estimate if any other lowenergy conformers may have been overlooked in the spectroscopic study, an independent determination of the equilibrium geometry of MeO-Oz with the aid of ab initio calculations has been carried out. In Table VI, theoretical energies and conformational data of the three most stable forms of $\mathrm{MeO-Oz}(1,2$, and 3) are given. These forms are encountered upon rotation of the MeO group from

[^6]Table VII. Comparison of Ozonide Structures ${ }^{a}$

param ${ }^{\text {b }}$	$\begin{aligned} & \mathrm{EtOZ} \\ & \mathrm{X}=\mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{FO} z \\ \mathrm{X}=\mathrm{F} \end{gathered}$	$\begin{gathered} t-\mathrm{F}_{2} \mathrm{Oz}, \\ \mathrm{X}=\mathrm{F} \end{gathered}$	$\begin{gathered} 1,1-\mathrm{F}_{2} \mathrm{Oz} \\ \mathbf{X}=\mathrm{F} \end{gathered}$	$\begin{gathered} \mathrm{MeO}-\mathrm{Oz} \\ \mathrm{X}=\mathrm{OCH}_{3} \end{gathered}$
$\mathrm{O}_{\mathrm{e}}-\mathrm{C}_{\mathrm{X}}$	1.415	1.382	1.401	1.368	1.406
$\mathrm{O}_{\mathrm{e}}-\mathrm{C}_{\mathrm{H}}$		1.426		1.425	1.430
$\mathrm{O}_{\mathrm{p}}-\mathrm{C}_{\mathrm{X}}$	1.410	1.382	1.368	1.360	1.411
$\mathrm{O}_{\mathrm{p}}-\mathrm{C}_{\mathrm{H}}$		1.411		1.404	1.406
$\mathrm{O}_{\mathrm{p}}-\mathrm{O}_{\mathrm{p}}$	1.461	1.463	1.455	1.467	1.474
$\mathrm{C}-\mathrm{X}$	1.090	1.375	1.366	1.360	1.377
$\mathrm{C}-\mathrm{O}_{\mathrm{e}}-\mathrm{C}$	104.6	105.3	105.3	103.9	105.8
$\mathrm{C}_{\mathrm{X}}-\mathrm{O}_{\mathrm{P}}-\mathrm{O}_{\mathrm{p}}$	99.2	101.1	101.8	101.8	102.9
$\mathrm{C}_{\mathrm{H}}-\mathrm{O}_{\mathrm{p}}-\mathrm{O}_{\mathrm{p}}$		101.1		99.4	99.1
$\mathrm{O}_{\mathrm{e}}-\mathrm{C}_{\mathrm{X}}-\mathrm{O}_{\mathrm{p}}$	105.7	107.6	106.8	110.5	106.3
$\mathrm{O}_{\mathrm{e}}-\mathrm{C}_{\mathrm{H}}-\mathrm{O}_{\mathrm{P}}$		104.6		103.5	103.6
$\mathrm{C}-\mathrm{O}_{\mathrm{p}}-\mathrm{O}_{\mathrm{p}}-\mathrm{C}$	49.4	46.0	41.9	42.0	44.9
$\mathrm{O}_{\mathrm{p}}-\mathrm{O}_{\mathrm{p}}-\mathrm{C}-\mathrm{X}$		83.5	84.1	96.0	97.4
$\mathrm{C}-\mathrm{O}_{\mathrm{e}}-\mathrm{C}-\mathrm{X}$		110.3	108.0	126.0	127.2
q	0.456	0.431	0.376	0.424	0.435
phase angle, ϕ^{c}	90	97	90	67	70

${ }^{a}$ All substituents are axial. $\mathrm{EtOz}=$ ethylene ozonide; $\mathrm{FOz}=$ vinyl fluoride ozonide; $t-\mathrm{F}_{2} \mathrm{Oz}=$ trans-difluoroethylene ozonide; $1,1-\mathrm{F}_{2} \mathrm{Oz}=$ vinylidene fluoride ozonide. ${ }^{b}$ Bond lengths and puckering amplitude q in A and angles in deg. $\mathrm{O}_{\mathrm{e}}=$ ether oxygen, $\mathrm{O}_{\mathrm{p}}=$ peroxy oxygen, $\mathrm{C}_{\mathrm{H}}=$ CH_{2} carbon, $\mathrm{C}_{\mathrm{X}}=$ substituted carbon. ${ }^{c}$ For a definition of q (puckering amplitude, \AA) and ϕ see: ref 29 ; see also ref 47.
$\tau\left(\mathrm{H}_{8} \mathrm{C}_{1}-\mathrm{O}_{6} \mathrm{C}_{7}\right)=\tau=0-360^{\circ}$. They correspond to exo positions of Me with $\tau \approx 60^{\circ}$ (form 1) or $\tau \approx 300^{\circ}\left(\approx-60^{\circ}\right)(3)$ and to the endo position of Me with τ close to 180° (2). The latter is equivalent to the conformation experimentally observed and is shown in Figures 2 and 3.2 is located at the global minimum of the energy hypersurface of $\mathrm{MeO}-\mathrm{Oz}$ while 1 and 3 correspond to local minima of the hypersurface.

The HF/4-31G geometry of 2 is listed in Table V along with parameters calculated for 1 and 3. Theoretical and experimental geometry data are in reasonable agreement. It is well-known ${ }^{22}$ that both the STO-3G and the 4-31G basis underestimate the degree of ring puckering considerably (see puckering amplitude q and dihedral angles in Tables V-VII). In addition, the 4-31G basis leads to an overestimation of bond polarities, thus artificially widening COC and COO angles. Nevertheless, ab initio results confirm the experimentally observed conformational features completely. Thus, MeO-Oz adopts the peroxy envelope conformation $\left(\phi(\right.$ STO-3G $)=73^{\circ}, \phi(4-31 \mathrm{G})=77^{\circ}$, Table VI, compare also with Figure 3) with the MeO substituent in an axial position and the Me group being endo ($\tau=180^{\circ}$). In addition, calculations show that the methyl hydrogens are perfectly staggered with regard to the bond $\mathrm{C}_{1}-\mathrm{O}_{6}$ (see relevant dihedral angles in Table V) and that the staggered conformation is maintained during rotation of the methoxy group or during pseudorotation of the ring. The nonbonded distance $\mathrm{C}_{1}, \mathrm{H}_{13}$ is $2.66 \AA$ thus lending support to the corresponding assumptions made when determining the experimental geometry.

It is intriguing to compare structural features of $\mathrm{MeO}-\mathrm{Oz}$ with those found for other ozonides and to investigate in which way different electronic and steric interactions between substituent and ring influence geometry and conformation. Selected data is summarized in Table VII.
The complete pseudorotational surface of the parent ozonide, EtOz (ethylene ozonide), has been determined by ab initio calculations (see Figure 4 in ref 22). It has been shown that EtOz adopts a twist conformation ($\phi=90^{\circ}$ or 270°), which is more stable than the envelope forms at $\phi=0^{\circ}$ or 180° (Figure 3) by $3 \mathrm{kcal} / \mathrm{mol} .^{22}$ In the twist form, EtOz has C_{2} symmetry, which is reduced to C_{1} symmetry upon substitution at a ring carbon. For $\mathrm{MeO}-\mathrm{Oz}$ one can distinguish between the twist form at $\phi=90^{\circ}$ with the MeO group in an axial position and the twist form at $\phi=270^{\circ}$ with the MeO group in an equatorial position (see Figure 3). Cremer ${ }^{20-22}$ has shown that π-donor substituents such as MeO prefer the axial position. In this position, the overlap between the HOMO of the Oz ring, which possesses π character (see Figure 3 in ref 21), and the electron lone pair orbitals of a substituent $\mathrm{X}(\mathrm{X}=\mathrm{MeO})$ is minimized and, accordingly, destabilizing

Figure 4. Dependence of the molecular energy ΔE (kcal/mol, relative to the energy of the most stable form 2), the puckering amplitude $q(\AA)$, and the pseudorotation phase angle ϕ (deg) on the rotational angle τ ($\mathrm{H}_{8} \mathrm{C}_{1}-\mathrm{O}_{6} \mathrm{C}_{7}$) (HF/STO-3G calculations).
four-electron interactions are largely avoided. ${ }^{49}$
Both experimental and calculated results suggest that $\mathrm{MeO}-\mathrm{Oz}$ prefers an equilibrium geometry with a pseudorotation phase angle about 20° smaller than that of the twist form at 90°. Ab initio results in Table VI reveal, however, that the pseudorotation phase angle is very sensitive to the conformation of the MeO group. If the MeO group rotates from the more stable endo position (2, $\tau \approx 180^{\circ}$) into one of the exo positions with $\tau \approx 60^{\circ}(1)$ or -60° (3), then ϕ will increase to 102° and 95° (HF/4-31G results), respectively, where these conformational changes are accompanied by an increase in q (see also Figure 5). The exo forms 1 and 3 are less stable by 0.4 and $0.8 \mathrm{kcal} / \mathrm{mol}(\mathrm{HF} / \mathrm{STO}-3 \mathrm{G})$. The corresponding HF/4-31G energies are considerably higher (2.2 and $3.1 \mathrm{kcal} / \mathrm{mol}$), but this is probably an artifact of the split valence basis. ${ }^{50}$

In Figure 5 the rotational potential of the MeO group is shown as a function of the dihedral angle $\tau\left(\mathrm{H}_{8} \mathrm{C}_{1}-\mathrm{O}_{6} \mathrm{C}_{7}\right)=\tau$. Rotation of the MeO group into the exo positions requires $3-4 \mathrm{kcal} / \mathrm{mol}$, which is typical of the conformational barriers in methyl alkyl ethers. Variation of the pseudorotational angle ϕ and the puckering amplitude q with τ are also shown in Figure 5.

An interesting feature in $\mathrm{MeO}-\mathrm{Oz}$ is the shortening of the $\mathrm{C}-\mathrm{OMe}$ bond relative to the ring bonds $\mathrm{C}_{1}-\mathrm{O}_{5}$ and $\mathrm{C}_{1}-\mathrm{O}_{2}$ in both the experimentally and theoretically derived structures. This differentiation in bond length at the anomeric center is also a manifestation of the exo-anomeric effect as observed in alkyl pyranosides and most recently in a novel bicyclic alkoxy ozonide. ${ }^{25}$ In general, pyranose sugars 8 with the general formula $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{XCH}_{2} \mathrm{Y}$ where X is oxygen have shortened exocyclic $\mathrm{C}_{1}-\mathrm{Y}$
(49) Similarly, an electron acceptor substituent prefers an equatorial position since this guarantees maximal HOMO-LUMO overlap between ring and substituent orbitals thus leading to strong stabilizing two-electron interactions.
(50) Since the 4-31G basis overestimates bond polarities and charge separation, anomeric effects and steric interactions are also overestimated (see ref 22).

Flgure 5. Lone pair numbering. Lone pair $\ell 1$ on the peroxide oxygen is obscured behind the peroxide and ether atoms.

Table VIII. Atomic Charges Calculated at the HF/6-31G* Level of Theory

atom	charge [e]	group	charge [e]
C_{1}	0.795	$\mathrm{C}_{1} \mathrm{H}$	1.006
C_{2}	-0.682	$\mathrm{C}_{3} \mathrm{H}_{9,10}$	0.696
C_{3}	0.314	$\mathrm{O}_{4} \mathrm{O}_{5}$	-0.762
O_{4}	-0.367	$\mathrm{C}_{7} \mathrm{H}_{11.12,13}$	0.367
O_{5}	-0.395	MeO	-0.259
O_{6}	-0.626		
C_{7}	-0.186		

bond lengths when Y is $O R$ and lengthened $C_{1}-Y$ bond lengths when Y is an axial halogen.

Comparison of energies, geometries, and charge distributions for 1,2 , and 3 provide a possibility of elucidating in which way the geometrical trends are consequences of anomeric and exoanomeric effects. The atomic charges listed in Table VIII reveal that C_{1}, which is bonded to three electronegative O atoms, is highly positively charged (0.795 e). Upon loss of negative charge the covalent radius of an atom normally decreases thus leading to shorter bonds. This effect is well known (compare, e.g., CF bond lengths in $\mathrm{CH}_{3} \mathrm{~F}, \mathrm{CH}_{2} \mathrm{~F}_{2}$, and $\mathrm{CHF}_{3}{ }^{51}$) and has been described in terms of an increase in the ionic character of the bond CX. ${ }^{13}$ In the case of $\mathrm{MeO}-\mathrm{Oz}$, only one $\mathrm{C}_{1}-\mathrm{O}$ bond is significantly shortened $\left(\mathrm{C}_{1}-\mathrm{O}_{6}\right)$, while $\mathrm{C}_{1}-\mathrm{O}_{2}$ and $\mathrm{C}_{1}-\mathrm{O}_{5}$ are longer than might be expected in view of the high positive charge of C_{1}. This, however, can be explained when considering the various anomeric interactions involving ring and substituent orbitals.

The direction of electron lone pair delocalization due to anomeric interactions in a fragment $\mathrm{O}-\mathrm{C}-\mathrm{X}$ depends on the energy of $\sigma^{*}(\mathrm{C}-\mathrm{X})$ and the overlap between lone pair (ℓ) and σ^{*} orbitals. For $\mathrm{X}=\mathrm{F}$ the energy of $\sigma^{*}(\mathrm{C}-\mathrm{X})$ is lower than that of $\sigma^{*}(\mathrm{C}-\mathrm{O})$, i.e., electron delocalization will take place from the O lone pair orbital into the exocyclic $\mathrm{C}-\mathrm{F}$ bond thus leading to a shortening of the $\mathrm{C}-\mathrm{O}$ bond and a lengthening of the $\mathrm{C}-\mathrm{F}$ bond. This has been confirmed when determining the geometry of F-substituted ozonides (see Table VII). In these compounds the peroxy group is a stronger π donor than the ether oxygen because of lone pair, lone pair repulsion in the former. For example, in $t-\mathrm{F}_{2} \mathrm{Oz}$ the bond $\underset{\AA}{\mathrm{C}}-\mathrm{O}_{\mathrm{p}}(1.368 \AA)$ is considerably shorter than the bond $\mathrm{C}-\mathrm{O}_{e}(1.401$ \AA A). ${ }^{18}$

In the case of $\mathrm{MeO}-\mathrm{Oz}$, it is difficult to predict the direction of electron lone pair delocalization. However, an analysis of the calculated MOs reveals that the LUMO of MeO-Oz is a σ^{*} (ring)
(51) Yokozeki, A.; Bauer, S. H. Top. Curr. Chem. 1975, 53, 71.

Chart I Newman Projections at the Bond $\mathrm{O}_{6}-\mathrm{C}_{1}{ }^{a}$

${ }^{a}$ Electron lone pairs are denoted by $\ell 1$ and $\ell 2$. Anomeric interactions between $\ell 1$ or $\ell 2$ and adjacent σ^{*} orbitals are listed, and their consequences with regard to bond lengths are indicated.

MO involving bonds $\mathrm{C}_{1}-\mathrm{O}_{5}, \mathrm{C}_{1}-\mathrm{O}_{2}$, and $\mathrm{O}_{4}-\mathrm{O}_{5}$. Accordingly, delocalization of the lone pair electrons at O_{6} into σ^{*} (ring) will be stronger than delocalization of the lone pair electrons at O_{2} and O_{5} into $\sigma^{*}\left(\mathrm{C}_{1}-\mathrm{O}_{6}\right)$.

In Chart I, Newman projections about the bond $\mathrm{C}_{1}-\mathrm{O}_{6}$ are given for 1,2 , and 3 . The positions of the two electron lone pairs at O_{6} are indicated assuming sp^{3} hybridization at C_{1} and O_{6}. These qualitative descriptions can be improved by investigating the total electron density distribution of $\rho(\mathbf{r})$ and its associated Laplace field $\nabla^{2} \rho(\mathbf{r})$. While the analysis of $\rho(\mathbf{r})$ provides information about the properties of atoms in molecules and chemical bonds, ${ }^{52-54}$ the Laplacian of $\rho(\mathbf{r})$ indicates where the electrons concentrate ($\nabla^{2} \rho(\mathbf{r})$ $<0)$ and where they are depleted in a molecule $\left(\nabla^{2} \rho(\mathbf{r})>0\right) .{ }^{53-5 s}$ Concentration lumps in nonbonding regions can be assigned to electron lone pairs and the corresponding position of maximum concentration can be considered as the "position" of the electron lone pair $(\ell) .{ }^{16}$

The electron density distribution $\rho(\mathbf{r})$ and the Laplace concentration $-\nabla^{2} \rho(\mathbf{r})$ of 2 have been calculated at the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ level of theory, and all lone pair positions have been determined. The corresponding positional data are listed in Table IX. According to these data, $\ell 1\left(\mathrm{O}_{6}\right)$ and $\ell 2\left(\mathrm{O}_{6}\right)$ (for definition of $\ell 1$ and $\ell 2$ see Figure 5) are antiperiplanar with regard to bonds $\mathrm{C}_{1}-\mathrm{O}_{2}\left(\tau=-169.6^{\circ}\right)$ and $\mathrm{C}_{1}-\mathrm{O}_{5}\left(\tau=173.5^{\circ}\right.$, Table IX), respectively. Hence, two exo-anomeric stabilizing interactions are possible in 2 as indicated in Chart I. For 1 and 3, there is just one exo-anomeric interaction possible involving either $\ell 1$ and $\sigma^{*}\left(\mathrm{C}_{1}-\mathrm{O}_{5}\right)$ or $\ell 2$ and $\sigma^{*}\left(\mathrm{C}_{1}-\mathrm{O}_{2}\right)$. As a consequence, $\mathbf{2}$ is more stable than 1 or 3 . Furthermore, the bond $\mathrm{C}_{1}-\mathrm{O}_{6}$, which is already short because of the high positive charge of C_{1}, becomes even shorter in $\mathbf{2}$ due to two exo-anomeric interactions. For the same reason $\mathrm{C}_{1}-\mathrm{O}_{2}$ and $\mathrm{C}_{1}-\mathrm{O}_{5}$ are lengthened in 2.

Since only one electron lone pair, either $\ell 1$ or $\ell 2$, is involved in the exo-anomeric interactions of the exo forms, a less pronounced shortening of bond $\mathrm{C}_{1}-\mathrm{O}_{6}$ is observed for 1 and 3 (Chart I and Table V). In 1, bond $\mathrm{C}_{1}-\mathrm{O}_{2}$ and in 3 bond $\mathrm{C}_{1}-\mathrm{O}_{5}$ are not affected by exo-anomeric interactions while $\mathrm{C}_{1}-\mathrm{O}_{5}$ of 1 and $\mathrm{C}_{1}-\mathrm{O}_{2}$ of $\mathbf{3}$ are lengthened due to charge transfer into the σ^{*} (ring) MO. The calculated bond lengths of 1 and 3 (Chart I) indicate that the exo-anomeric effect entails a lengthening of $0.02-0.03 \AA$ in
(52) (a) Bader, R. F. W.; Slee, T. S.; Cremer, D.; Kraka, E. J. Am. Chem. Soc. 1983, 105, 5061 . (b) Cremer, D.; Kraka, E.; Slee, T. S.; Bader, R. F. W.; Lau, C. D. H.; Nguyen-Dang, T. T.; MacDougall, P. S. J. Am. Chem. Soc. 1983, 105, 5069. (c) Cremer, D.; Kraka, E. J. Am. Chem. Soc. 1985, 107, 3800, 3811 .
(53) Cremer, D.; Kraka, E. Croat. Chem. Acta 1984, 57, 1259.
(54) Cremer, D. In Modelling of Structure and Properties of Molecules; Maksic, Z. B., Ed.; Ellis Horwood: Chichester, England, 1987; in press. (55) (a) Bader, R. F. W.; Essén, H. J. Chem. Phys. 1984, 80, 1943. (b) Bader, R. F. W.; MacDougall, P. J.; Lau, C. D. H. J. Am. Chem. Soc. 1984, 106, 1594.

Table IX. Description of Electron Lone Pair Concentrations in Terms of the Laplacian of $\rho(\mathbf{r})$ Calculated at the HF/6-31G* Level ${ }^{a}$

atom	param	lone pair $\ell 1$	lone pair $\ell 2$
O_{6}	$r(6, \ell)$	0.335	0.335
	$\alpha(1,6, \ell)$	102.0	101.8
	$\alpha(7,6, \ell)$	103.2	102.5
	$\tau(2,1,6, \ell)$	-169.6	56.2
	$\tau(5,1,6, \ell)$	-52.3	173.5
	$\tau(8,1,6, \ell)$	66.4	-67.8
	$-\nabla^{2} \rho(\mathbf{r})$	157.6	156.6
O_{2}	$r(2, \ell)$	0.334	0.334
	$\alpha(1,2, \ell)$	101.1	100.0
	$\alpha(3,2, \ell)$	101.7	100.8
	$\tau(5,1,2, \ell)$	103.5	-108.9
	$\tau(6,1,2, \ell)$	-133.2	14.4
	$\tau(8,1,2, \ell)$	-11.0	136.6
	$\tau(4,3,2, \ell)$	-128.6	82.8
	$-\nabla^{2} \rho(\mathrm{r})$	161.0	162.0
O_{4}	$r(4, \ell)$	0.329	0.329
	$\alpha(3,4, \ell)$	98.6	101.2
	$\alpha(5,4, \ell)$	97.9	96.7
	$\tau(2,3,4, \ell)$	-62.1	143.8
	$-\nabla^{2} \rho(\mathrm{r})$	203.2	200.1
O_{5}	$r(5, \ell)$	0.329	0.329
	$\alpha(1,5, \ell)$	98.8	100.5
	$\alpha(4,5, \ell)$	97.5	97.2
	$\tau(2,1,5, \ell)$	-72.9	127.6
	$\tau(6,1,5, \ell)$	164.4	4.9
	$\tau(8,1,5, \ell)$	44.9	-114.6
	$\tau(3,4,5, \ell)$	60.3	-143.7
	$-\nabla^{2} \rho(\mathrm{r})$	199.3	197.0

${ }^{a}$ Lone pairs $\ell 1$ and $\ell 2$ are given for each atom in Figure 5. Distance r in \AA, angles α and τ in deg, $-\nabla^{2} \rho(r)$ in e / \AA^{5}.

Table X. Close Intramolecular Contacts between Methyl Hydrogens and O Atoms of Ring ${ }^{a}$

conformatn $\tau(8,1,6,7)$	atom	O_{2}	O_{4}	O_{5}
56.9	H_{13}			2.681
179.8	H_{12}		2.750	2.737
	H_{13}	2.647		
300.3	H_{12}	2.669		

${ }^{a}$ Distances in \AA. Only nonbonded distances smaller than $3 \AA$ are given.
the ring bonds $\mathrm{C}_{1}-\mathrm{O}_{2}$ and $\mathrm{C}_{1}-\mathrm{O}_{5}$ and a shortening of similar magnitude in the bond $\mathrm{C}_{1}-\mathrm{O}_{6}$.

A comparison of the $\mathrm{O}-\mathrm{O}$ bond lengths between $\mathrm{MeO}-\mathrm{Oz}$ and fluoroozonides also suggests that O_{p} in the former is a weaker π-donor than O_{Me}. The $\mathrm{O}_{\mathrm{p}}-\mathrm{O}_{\mathrm{p}}$ distance in $\mathrm{MeO}-\mathrm{Oz}$ is longer by about $0.01-0.02$ A compared to $\mathrm{EtOZ}, \mathrm{FOz}$, and $t-\mathrm{F}_{2} \mathrm{Oz}$ (Table VII). This also suggests more lone pair, lone pair repulsion between adjacent O_{p} atoms in $\mathrm{MeO}-\mathrm{Oz}$ consistent with their weaker π donor abilities relative to the exocyclic $\mathrm{O}_{\text {Me }}$ -

Apart from stabilizing anomeric interactions, electrostatic attraction between the negatively charged O atoms of the ring and the positively charged H atoms of the Me group influence the relative stabilities of $\mathbf{1 , 2}$, and 3 . In Table \mathbf{X}, nonbonded distances between these atoms are listed. They reveal that in 2 there are three close H, O contacts while there is only one in either 1 or 3. Again, this leads to a greater stability of the endo form 2.

In conclusion, the two-pronged investigation of $\mathrm{MeO}-\mathrm{Oz}$ has revealed a number of interesting structural and electronic features caused by substituent, ring interactions in this substituted ozonide. MW experiments and ab initio calculations show that $\mathrm{MeO}-\mathrm{Oz}$ in its equilibrium geometry prefers: (a) the peroxy envelope conformation ($\phi=72^{\circ}$), (b) an axial position of the MeO substituent, (c) an endo position of the Me group, and (d) staggering of the methyl hydrogens with regard to the $\mathrm{C}-\mathrm{OMe}$ bond.

These preferences are caused or at least influenced by an exo-anomeric effect involving the electron lone pairs at O_{me} and the $\mathrm{C}_{1}-\mathrm{O}$ ring bonds. The exo-anomeric effect is also responsible
for a pronounced shortening of the $\mathrm{C}_{1}-\mathrm{OCH}_{3}$ bond. This shortening is increased by Coulomb effects involving the strongly positively charged C_{1} atom and the three adjacent O atoms. Electrostatic effects between methyl hydrogens and the O atoms of the ring also play a role since they add to the stability of the endo form.

Acknowledgment. This work was supported by Grants CHE8303615 and CHE-8603834 from the National Science Foundation. Support at the Universität Koln was provided by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen

Industrie. Helpful discussions on various aspects of this research with Dr. Kurt W. Hillig II are gratefully acknowledged. We thank Professor H. D. Rudolph and Dr. V. Typke of Ulm University for the program ZFAP6 which was invaluable throughout this entire project.

Supplementary Material Available: Tables S1-S17 listing transition frequencies and centrifugal distortion constants for the ground vibrational states of the normal and isotopic species and observed and calculated Stark coefficients (18 pages). Ordering information is given on any current masthead page.

Transition Structures for Homodienyl 1,5-Sigmatropic Hydrogen Shifts: Origin of the High Endo Stereoselectivity

Richard J. Loncharich and K. N. Houk*
Contribution from the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90024-1569. Received August 17, 1987

Abstract

The endo and exo transition structures for the homodienyl hydrogen shift of 1-methyl-2-vinylcyclopropane have been obtained with $a b$ initio quantum mechanical calculations. The difference in energy between the endo and exo transition states is estimated to be $17 \mathrm{kcal} / \mathrm{mol}$, favoring the endo mode of reaction, as compared to Berson's estimate of at least 12 $\mathrm{kcal} / \mathrm{mol}$ made on the basis of experimental data. The transition structures are compared to that obtained earlier for the simplest ene reaction of propene with ethylene. Orbital overlap factors, which lead to the endo preference, are discussed.

The best understood stereoelectronic imperative is that developed by Woodward and Hoffmann, differentiating thermally allowed and forbidden reactions. ${ }^{1}$ Among the thermally allowed pericyclic reactions, there are stereoisomeric variants that have activation energy differences as large as those between allowed and forbidden reactions. ${ }^{2}$ These are understood in a few cases, but general rules have not yet emerged. We have been investigating such reactions theoretically, and here we describe theoretical studies of an especially well-documented spectacular reaction of this type.

In connection with our study of the ene reaction, ${ }^{3}$ we have undertaken a study of the intramolecular retro-ene reaction of cis-1-methyl-2-vinylcyclopropane (1). This transformation is also known as the homodienyl 1,5 -hydrogen shift. It can occur in two stereochemically distinct modes, endo or exo, both of which are thermally allowed. The endo transition state gives cis-1,4-hexadiene (2) while the exo transition state gives trans-1,4-hexadiene (3), as shown in Scheme I. Daub and Berson ${ }^{4}$ estimated that the endo transition state is at least $12 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the exo transition state. This free energy difference was estimated from experiments on substituted derivatives. Activation energies were measured for compounds having tert-butyl substitution at the terminal vinyl position of 1,1-dimethyl-2-vinylcyclopropane (4). The trans-substituted system (4, $\left.\mathrm{R}_{2}=t-\mathrm{Bu}\right)$

4

6

[^7]Scheme I

Table I. Energetics of the Retro-Ene Reactions of cis-1-Methyl-2-vinylcyclopropane (Theoretical Results Are Obtained with the 3-21G Basis Set) ${ }^{a}$

adduct	E_{a}	ΔH^{*}	ΔS^{*}	ΔH_{rxn}	T, K
endo	48.8	45.3	-6.4	-11.0	
exo	65.9	62.0	-6.1	-12.7	
exptl I ${ }^{b}$	31.3			-5.2^{c}	543
exptl II	31.2 ± 0.7		-4.7		$439-493$
exptl III	31.1	30.2 ± 0.6	-3.7		$443-463$

[^8]
[^0]: ${ }^{\dagger}$ Present address: Lehrstuhl für Textilchemie und Makromoleculare Chemie, der RWTH, Aachen, Federal Republic of Germany.
 ${ }^{\ddagger}$ The University of Michigan.
 Universitāt Kōln.

[^1]: (1) Presented in part as paper TA5, 41st Symposium on Molecular Spectroscopy, The Ohio State University, Columbus, OH, 1986.
 (2) For recent reviews, see: (a) Anomeric Effect: Origin and Consequences; Szarek, W. A., Horton, D., Eds.; American Chemical Society: Washington, DC, 1979; ACS Symp. Ser. No. 87. Kirby, A. J. Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer-Verlag: Berlin, 1983. (c) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon Press: London, 1983.
 (3) Lemieux, R. U.; Chu, N. J. Abstracts of Papers, 133rd National Meeting of the American Chemical Society, San Francisco, CA; American Chemical Society: Washington, DC, 1958; No. 31N.
 (4) Eliel, E. L. Angew. Chem., Int. Ed. Engl. 1972, 11, 739.
 (5) de Hoog, A. J.; Buys, H. R.; Altona, C.; Havinga, E. Tetrahedron 1969, 25, 3365.
 (6) Malatesta, V.; Ingold, K. U. J. Am. Chem. Soc. 1981, 103, 609.
 (7) Beckwith, A. L. J.; Easton, C. J. J. Am. Chem. Soc. 1981, 103, 615.
 (8) Bailey, W. F.; Croteau, A. A. Tetrahedron Lett. 1981, 22, 545.
 (9) McKelvey, R. D.; Iwamura, H. J. Org. Chem. 1985, 50, 402.
 (10) Danishefsky, S.; Langer, M. E. J. Org. Chem. 1985, 50, 3672.
 (11) Deslongchamps, P. Tetrahedron 1975, 31, 2463.
 (12) (a) Jeffrey, G. A.; Pople, J. A.; Radom, L. Carbohydr. Res. 1972, 25, 117. (b) Jeffrey, G. A.; Pople, J. A.; Radom, L. Ibid. 1974, 38, 81. (c) Jeffrey, G. A.; Pople, J. A.; Binkley, J. S.; Vishveshwara, S. J. Am. Chem. Soc. 1978, 100, 373. (d) Jeffrey, G. A.; Yates, J. H. J. Am. Chem. Soc. 1979, 101, 820 .
 (13) Wolfe, S.; Whangbo, M.-H.; Mitchell, D. J. Carbohydr. Res. 1979, $69,1$.

[^2]: (14) Tvaroška, I.; Kozar, T. J. Am. Chem. Soc. 1980, 102, 6929.
 (15) (a) Schäfer, L.; Van Alsenoy, C.; Williams, J. O.; Scarsdale, J. N.; Geise, H. J. J. Mol. Struct. 1981, 76, 349. (b) Williams, J. O.; Scarsdale, J. N.; Schāfer, L.; Geise, H. J. Ibid. 1981, 76, 11. (c) Van Nuffel, P.; Van Alsenoy, C.; Lenstra, A. T. H.; Geise, H. J. Ibid. 1984, 125, 1.
 (16) LaBarge, M. S.; Hillig, II, K. W.; Kuczkowski, R. L.; Cremer, D. J. Phys. Chem. 1986, 90, 3092.
 (17) Hillig, II, K. W.; Lattimer, R. P.; Kuczkowski, R. L. J. Am. Chem. Soc. 1982, 104, 988.
 (18) Hillig, II, K. W.; Kuczkowski, R. L. J. Phys. Chem. 1982, 86, 1415.
 (19) Hillig, II, K. W.; Kuczkowski, R. L.; Cremer, D. J. Phys. Chem. 1984, 88, 2025.
 (20) Cremer, D. J. Am. Chem. Soc. 1981, 103, 3633.
 (21) Cremer, D. J. Chem. Phys. 1979, 70, 1928.
 (22) Cremer, D. J. Chem. Phys. 1979, 70, 1898.
 (23) For a complete index of structural data and references for carbohydrates, nucleosides, and nucleotides based on chemical formulas in the Cambridge Crystallography Data Bank, see: Jeffrey, G. A.; Sundaralingam, M. Adv. Carbohydr. Chem. Biochem. 1985, 43, 203.
 (24) (a) Heitmann, J. A.; Richards, G. F. Carbohydr. Res. 1973, 28, 180. (b) Heitmann, J. A.; Richards, G. F.; Schroeder, L. R. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1974, B30, 2322.
 (25) Bunnelle, W. H.; Schlemper, E. O. J. Am. Chem. Soc. 1987, 109, 612.
 (26) Keul, H.; Kuczkowski, R. L. J. Am. Chem. Soc. 1984, 106, 3383.
 (27) STO-3G: Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 2657. 4-31G: Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.6 -31G*: Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
 (28) Cremer, D.; Wallasch, M., to be published.
 (29) Cremer, D.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 1354.

[^3]: (37) Keul, H.; Kuczkowski, R. L. J. Org. Chem. 1985, 50, 3371.
 (38) Wood, J. T.; Arney, J. S.; Cortes, D.; Berson, J. A. J. Am. Chem. Soc. 1978, $100,3855$.
 (39) The stereoassignment of the cis- and trans- d_{1} isotopes of $\mathrm{McO}-\mathrm{Oz}$ is unambiguous from their isotopic shifts in the microwave spectrum. This supports the ${ }^{1} \mathrm{H}$ NMR assignment for alkoxy ozonides determined in the investigation of the stereochemistry of 1,3 -dipolar cycloaddition reactions of HDCOO, ref 37.
 (40) Sawyer, C. B.; Kirsch, J. F. J. Am. Chem. Soc. 1973, 95, 7375. (41) (a) Van Eijck, B. P. J. Mol. Spectrosc. 1974, 53, 246. (b) Typke, V. J. Mol. Spectrosc. 1976, 63, 170 . (c) Watson, J. K. G. In Vibrational. Spectra and Structure; Durig, J. R., Ed.; Elsevier: 1977; Vol 6.

[^4]: (43) Muenter, J. S. J. Chem. Phys. 1968, 48, 4544.
 (44) (a) Bartell, L. S.; Romanesko, D.; Wong, T. C. Spec. Period. Rep.: Mol. Struct. Diffr. Methods 1975, 3, Chapter 4. (b) Nösberger, P.; Bauder, A.; Gunthard, Hs. H. Chem. Phys. 1973, 1, 418. (c) Kierns, J. J.; Curl, R. F., Jr. J. Chem. Phys. 1968, 48, 3773.

[^5]: (45) Conversion factor $\mathrm{AI}_{\mathrm{a}}=505379.05 \mathrm{MHz}$ amu \AA^{2}.
 (46) Costain, C. C. J. Chem. Phys. 1958, 29, 864.

[^6]: (47) Note that the value of the pseudorotation phase angle ϕ depends on the numbering of the ring atoms. In order to directly compare ϕ with the corresponding values of other ozonides (see ref 16,21 , and 22), the ring atoms of $\mathrm{MeO}-\mathrm{Oz}$ have been renumbered according to the convention given in ref 22 and used in Figure 3, i.e., O_{2} is atom 1, C_{1} is atom 2, etc. Adopting this numbering for $1,1-F_{2} \mathrm{Oz}, \phi=67^{\circ}$ is obtained rather than 113° (see Table VII, ref 16).
 (48) Altona, C.; Van der Veek, A. P. M. Tetrahedron 1968, 24, 4377.

[^7]: (1) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry, Academic: New York, 1970.
 (2) See, for example: (a) Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1985, 107, 2099. (b) Kirmse, W.; Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1984, 106, 7989.
 (3) Loncharich, R. J.; Houk, K. N. J. Am. Chem. Soc. 1987, 109, 6947.
 (4) Daub, J. P.; Berson, J. A. Tetrahedron Lett. 1984, 25, 4463.

[^8]: ${ }^{a}$ Absolute energies (au) of the reactant, endo transition structure, exo transition structure, cis product, and trans product are $-231.67544,-231.59670,-231.57047,-231.69302$, and -231.69572 , respectively. ${ }^{b}$ Reference 4. ${ }^{c}$ Reference $10 .{ }^{d}$ Reference $8 \mathrm{c}, \mathrm{d}$. ${ }^{\bullet}$ Reference 8 b .
 leads to a $7.0 \mathrm{kcal} / \mathrm{mol}$ lower activation energy than the cis-tert-butyl system ($4, R_{1}=t$ - Bu), which corresponds to a $\Delta \Delta G^{*}$ of $6.5 \mathrm{kcal} / \mathrm{mol}$; and the cis-tert-butyl system gives a cis to trans product ratio of 99.4:0.6, which corresponds to a $\Delta \Delta G^{*}$ of 5.5 $\mathrm{kcal} / \mathrm{mol}$. Thus, the formation of the cis product occurs with a rate that is over 5 orders of magnitude faster than the rate of formation of the trans product. Berson, following an earlier suggestion by Winstein, ${ }^{5}$ proposed that this rate difference "is

